Publications

Publications

Research papers


  1. 28.Jones-Burrage SE*, TA Kremer*, and JB McKinlay. 2019. Cell aggregation and aerobic respiration are important for Zymomonas mobilis ZM4 survival in an aerobic minimal medium. bioRxiv. doi: https://doi.org/10.1101/526699  * equal contribution.


  1. 27.Govindaraju A, JB McKinlay, and B LaSarre. 2018. Phototrophic lactate utilization by Rhodopseudomonas palustris is stimulated by co-utilization with additional substrates. bioRxiv. doi: https://doi.org/10.1101/502963


  1. 26.Schindel HS, JA Karty, JB McKinlay, and CE Bauer. 2018. Characterization of a glycyl-radical enzyme bacterial microcompartment pathway in Rhodobacter capsulatus. J. Bacteriol.  DOI: 10.1128/JB.00343-18


25. LaSarre, B, DT Kysela, BD Stein, A Ducret, YV Brun, and JB McKinlay. 2018.

       Restricted localization of photosynthetic intracytoplasmic membranes in

       multiple genera of purple nonsulfur bacteria. mBio. 9: e00780-18


  1. 24.Lee, FJ, K Miller, JB McKinlay, ILG Newton.  2018. Differential carbohydrate utilization by honey bee core and non-core symbionts. FEMS Microbiol. Ecol. 94: fiy113


  1. 23.McCully, AL, MG Behringer, JR Gliessman, EV Pilipenko, JL Mazny,

       M Lynch, DA Drummond and JB McKinlay. 2018. An Escherichia

        coli nitrogen starvation response is important for mutualistic

       coexistence with Rhodopseudomonas palustris. Appl. Environ.

       Microbiol. 84: e00404-18


  1. 22.McCully, AL, B LaSarre, and JB McKinlay. 2017. Recipient-biased

       competition for an intracellularly generated cross-fed nutrient

       is required for coexistence of microbial mutualists. mBio.

       8: e01620-17


  1. 21.McCully, AL*, B LaSarre*, and JB McKinlay. 2017. Growth-independent cross-feeding modifies   

       boundaries for coexistence in a bacterial mutualism. Env. Microbiol. 19: 3538-3550

    * equal contribution.


  1. 20.Gliessman, JR, TA Kremer, AA Sangani, SE Jones-Burrage, and JB McKinlay. 2017. Pantothenate auxotrophy in Zymomonas mobilis ZM4 is due to a lack of aspartate decarboxylase activity. FEMS Microbiol. Lett. 364: fnx136  DOI: https://doi.org/10.1093/femsle/fnx136


  1. 19.Dalia, TN, CA Hayes, S Stolyar, CJ Marx, JB McKinlay, and AB Dalia. 2017. Multiplex genome editing by

       natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol.

       DOI: 10.1021/acssynbio.7b00116


  1. 18. Fritts, RK, B LaSarre, AM Stoner, AL Posto, and JB McKinlay. 2017. A

        Rhizobiales-specific unipolar polysaccharide adhesin contributes to

        Rhodopseudomonas palustris biofilm formation across diverse

        photoheterotrophic conditions. Appl. Environ. Microbiol. 83: e03035-16  

      Spotlight       


  1. 17.LaSarre, B, AL McCully, JT Lennon, and JB McKinlay. 2017. Microbial

       mutualism dynamics governed by dose-dependent toxicity of cross-fed

       nutrients.  ISME J. 11: 337-348.


  1. 16.McCully, AL and JB McKinlay. 2016. Disrupting Calvin cycle phosphoribulokinase activity in    

       Rhodopseudomonas palustris increases the H2 yield and specific production rate proportionately. Int. J.    

       Hydrogen. Energ. 41: 4143-4149


  1. 15.Kremer, TA*, B LaSarre*, AL Posto, and JB McKinlay. 2015. N2 gas is an effective fertilizer for bioethanol  production by Zymomonas mobilis. Proc. Natl. Acad. Sci. USA. 112: 2222-2226. * equal contribution. Press


  1. 14.Gordon, GC and JB McKinlay. 2014. Calvin cycle mutants of photoheterotrophic purple non-sulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J. Bacteriol. 196:1231-1237.


  1. 13.McKinlay, JB, Y Oda, M Rühl, AL Posto, U Sauer, and CS Harwood. 2014. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J. Biol. Chem. 289: 1960-1970.


  1. 12.Adessi, A, JB McKinlay, CS Harwood, and R De Philippis. 2012. A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4+ -containing vegetable wastes. Int. J. Hydrogen. Energ. 37: 15893-15900.   


  1. 11.Jiao, Y, A Navid, B Stewart, JB McKinlay, M Thelen, and J Pett-Ridge. 2012. Syntrophic metabolism of a co-culture containing Clostridium cellulolyticum and Rhodopseudomonas palustris for hydrogen production. Int. J. Hydrogen. Energ. 37: 11719–11726.  


  1. 10.McKinlay, JB and CS Harwood. 2011. Calvin cycle flux, pathway constraints and substrate redox state together determine the H2 biofuel yield in photoheterotrophic bacteria. mBio. 2:doi:10.1128/mBio.00323-10. Press


  1. 9.McKinlay, JB, M Laivenieks, BD Schindler, AA McKinlay, S Siddaramappa, JF Challacombe, SR Lowry, A Clum, AL Lapidus, KB Burkhart, V Harkins and C Vieille. 2010. A genomic perspective on the potential of Actinobacillus succinogenes for industrial chemical production. BMC Genomics. 11: 680


  1. 8.Huang, JJ, EK Heiniger, JB McKinlay, and CS Harwood. 2010. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl. Environ. Microbiol. 76: 7717-7722.


  1. 7.McKinlay, JB and CS Harwood. 2010. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc. Natl. Acad. Sci. USA. 107: 11669-11675.


  1. 6.McKinlay, JB and C Vieille. 2008. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab. Eng. 10: 55-68.


  1. 5.McKinlay, JB, Y Shachar-Hill, JG Zeikus, and C Vieille. 2007. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analysis of 13C-labeled metabolic product isotopomers. Metab. Eng. 9: 177-192


  1. 4.McKinlay, JB, JG Zeikus, and C Vieille. 2005. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656.


  1. 3.Master, ER, JB McKinlay, GR Stewart, and WW Mohn. 2005. Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400. Can. J. Microbiol. 51: 399-404


  1. 2.McKinlay, JB, and JG Zeikus. 2004. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl. Environ. Microbiol. 70: 3467-3474.


  1. 1.Kim, P, M Laivenieks, J McKinlay, C Vieille, and JG Zeikus. 2004. Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes. Plasmid. 51: 108-115.

 

Reviews


  1. 3. McKinlay, JB and CS Harwood. 2011. Harnessing bacteria that use light to produce hydrogen. Microbe. 6: 345-351.


  1. 2.McKinlay, JB and CS Harwood. 2010. Photobiological production of hydrogen gas as a biofuel. Curr. Opin.  Biotechnol. 21: 244-251.


  1. 1.McKinlay, JB, C Vieille, and JG Zeikus. 2007. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740.

Book Chapters


  1. 2.McKinlay, JB. 2014. Systems biology of photobiological hydrogen production by purple non-sulfur bacteria. In Microbial Bioenergy: Hydrogen Production ed. Edited by D. Zannoni and R. De Philippis. Springer, Dordrecht.    


  1. 1.McKinlay, JB and CS Harwood. 2010. Applications of stress response studies: biofuel production. In

    Bacterial Stress Responses 2nd ed. Edited by G. Storz and R. Hengge. ASM Press. 

t h e    M c K i n l a y   L a b

Department of Biology, Indiana University, Bloomington  

All webpage artwork copyright Jake McKinlay.   Contact for permission to use.

Google scholarhttps://scholar.google.com/citations?user=allBqQcAAAAJ&hl=enhttps://scholar.google.com/citations?user=allBqQcAAAAJ&hl=enshapeimage_2_link_0

Jake McKinlay 2017